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6.046 Exam 1 crib sheet

Bachmann-Landau notations (Big-O shit)
f(n) ∈ Θ(g(n)) - f is bounded both above and below asymptotically
! or:    g(n) * k1 ≤ f(n) ≤ g(n) * k2,  for some positive k1 k2
f(n) ∈ O(g(n)) - f is bounded above by g (up to a constant factor)
! or:    |f(n)| ≤ g(n) * k, for some k
f(n) ∈ Ω(g(n)) - f is bounded below by g (up to a constant factor)
! or:    f(n) ≥ g(n) * k, for some positive k
f(n) ∈ o(g(n)) - f is dominated by g asymptotically
! or:    |f(n)| ≤ |g(n)| * ∊, for all ∊
f(n) ∈ ω(g(n)) - f dominates g asymptotically
! or:    |f(n)| ≥ |g(n)| * ∊, for all ∊

Recurrences
Master theorem: Applies to relations of this form:

n is the size of the problem. a is the number of subproblems in the 
recursion. n/b is the size of each subproblem. f (n) is the cost of the 
work done outside the recursive calls, which includes the cost of 
dividing the problem and the cost of merging the solutions to the 
subproblems.

Case 1: If                                          for  then: 
Case 2: If true for some k ≥ 0 that: ! !             then:

Case 3: If true that  ! !             for  AND also true 
that:! !        for c > 1, sufficiently large n: 

Iteratively / with substitution
Substitute in step by step until you notice a pattern. Then use that 
pattern to extract the solution.
Problem: T(n) = T(n-1) + n
Solution: T(n) = T(n-1) + n = T(n-2) + n-1 + n = ... = 1+ 2 + ... + n = 
(n+1)n/2 = Θ(n^2)

Divide & Conquer
Split into subproblems and recursively solve each subproblem. 
Subproblems must be much smaller than original problem. 
Examples are: mergesort, quicksort

Fast Fourier Transform (FFT)
Used to reduce polynomial multiply time to Θ(nlogn)
1) Choose n roots of unity as points
2) [Evaluation] DFT to go from coefficient form to point-wise form 

O(nlogn)
3) Point wise multiplication in O(n) time
4) [Interpolation] Inverse DFT to go back from point-wise O(nlogn)

How to get the polynomial in the first place??? (pset 2 #1)
Problem: Let A be a finite set with n distinct integer elements in 
the range of [1, 10n]. Give an efficient algorithm that runs in time 
O(n log n) to find whether there is some triple of three distinct 
elements
(x, y, z) such that z = x + y, z = x + y + 1, or z = x + y - 1.
Solution: Create a polynomial P(x) from the set:
P(x) = a1x1 + a2x2 + ... + anxn

where ai = 1 if element i ∈ A. Square the polynomial with FFT
to obtain a new polynomial

The values bk will be exactly the values of ai + aj ! This resulting 
polynomial’s coefficients qk will be non-zero positive integers if there 

exists a pair of elements i, j ∈ A such that k = i + j. The resulting 
polynomial will have up to 20n elements, but we only need to check 
the first 10n.

Randomization
Basic idea is that randomization removes bias from inputs, and 
increases average algorithm efficiency (avoid worst case scenarios)

How to do probabilistic analysis (based on hiring problem)
Use indicator random variables:

Instead of assigning one variable to count number of occurrences, 
assign many variables for each occurrence. Xi is the event where 
candidate i is hired (1 if hired, 0 if not). Target X = sum of all Xi’s. 
So you need the probability per candidate.

E[Xi] = Pr {candidate i is hired}
Happens when candidate i is better than 1 through 
i-1. Candidates arrive randomly, so all are equally 
liked to be best. Candidate i has a 1/i chance of 
being better than 1 through i-1.

Dynamic Programming
Requires: Optimal substructure and overlapping subproblems
Substructure: can subproblem solutions be combined?
Overlapping Subproblems: want many redundant subproblems
Recursion: Create the recursive equation and write the algorithm
Memoization: keep tabs on subproblems already solved

Multivariate Polynomials (what)
The problem: given two polynomials, find out if P≡Q, or P-Q=0
Definition 1: the degree of multivariable poly is the highest sum of 
"        exponents: eg degree of x2y3z+x6yz is 8
What is different? number of roots can be infinite, expanding into 
monomials can result in exponential terms growth

The general idea is to subtract (O(n) time) then test if it is 0. How? 
Randomly sample a shit ton of points and see if they all evaluate 
to 0. If so, then it is very, very likely that it is 0. How likely? That is 
bounded by d/|S| (d = degree, S = set of numbers sampled). This 
is Shwartz-Zippel Lemma.

Man on the moon problem (AKA string equality)
The idea is so treat strings like polynomials and then do polynomial 
equality.
Let a = a0a1a2 ... an and b = b0b1b2 ... bn (everything is a 0 or 1).
The polynomial is: and the same for b.

Size limitations: we can’t have that much stuff 
transmitted so we need to have some sort of compression. So we 
take all the bits and sample them mod p, some prime number.

Honestly I don’t know why they don’t just compare md5 hashes.

Key Proofs and Relations
1+2+...+n-1+n == (n+1)*n/2
2n-1+2n-2+2n-3++...+22+21 == 2n - 1
an+an-1+an-2+...+a2+a1+1 == (an+1-1)/(a-1)

Loop invariants
A statement that holds no matter what, every iteration
Initialization- true prior to the first iteration
Maintenance- true before an iteration of the loop, remains true 
before next iteration
Termination- When loop terminates, invariant gives us a useful 
property that helps show that the algorithm is correct



Algorithms
Convex hull: Find points with highest y intercept of line between 
shapes and points with lowest y intercept of line and connect them.
Greedy recursive for selection: choose earliest to finish
s=start times f=finish times k=current index n=length of schedule
RECURSIVE-ACTIVITY-SELECTOR(s,f,k,n):
m=k+1
while m<=n and s[m] < f[k]  //find first 
finishing activity
! m=m+1
if m<=n

return {am} U RECURSIVE-ACTIVITY-
SELECTOR(s,f,m,n)
else return 0

Running time O(n), if activities already sorted. Else O(n log n)
Greedy iterative for selection: choose earliest to finish
s=start times f=finish times k=current index n=length of schedule
GREEDY-ACTIVITY-SELECTOR(s,f):
n = s.length
A = {a1}
k=1
for m = 2 to n:
! if s[m] >= f[k]
! ! A = A U {am}
! ! k = m
return A

Running time O(n)
SELECT median finding: recursive partitioning
A[p..r] = array we are analyzing i=ith smallest element to return
RANDOMIZED-SELECT(A,p,r,i):
if p == r:
! return A[p]
q = RANDOMIZED-PARTITION(A,p,r) //random pivot
k = q - p + 1
if i == k:! //the pivot is the answer
! return A[q]
elif i < k:
! return RANDOMIZED-SELECT(A,p,q-1,i)
else:
! return RANDOMIZED-SELECT(A,q+1,r,i-k)

Running time O(n)
Quick sort
1) pick pivot randomly (best is randomized)
2) Put all points higher than pivot on the right, all lower on the left
3) Recursively sort these two sides
Running time O(n log n)
Randomized Hiring problem
1) choose k random candidates to use as trial period
2) For the next n-k candidates, if any > max (1 to k) then auto 

choose that one to hire
1/e probability of hiring best candidate
Industry assembly line DP problem
i=sta&on	  #	  j=line	  #	  ai,j=assembly time ti,j=transfer time ei=entry time 
xi=exit time n=number of stations f= q= f*= q*=
FASTEST-WAY(a,t,e,x,n):
f1[1] = e1 + a1,1
f2[1] = e2 + a2,1
for j=2 to n:
! if f1[j-1] + a1,j ≤ f2[j-1] + t2,j-1 + a1,j:
! ! f1[j] = f1[j-1] + a1,j
! ! q1[j] = 1
! else:
! ! f1[j] = f2[j-1] + t2,j-1 + a1,j
! ! q1[j] = 2
! if f2[j-1]+a2,j ≤ f1[j-1] + t1,j-1 + a2,j:
! ! f2[j] = f2[j-1]+a2,j

! ! q2[j] = 2
! else:
! ! f2[j] = f1[j-1]+t1,j-1 + a2,j
! ! q2[j] = 1
if f1[n] + x1 ≤ f2[n] + x2:
! f* = f1[n] + x1
! q* = 1
else:
! f*, q* = f2[n] + x2 , 2

Running time O(n)
Bellman ford pathfinding
Works on negative edges too O(V*E)
1. Assign all nodes to infinity
2. for i from 1 to size(vertices)-1:
    for each edge uv in edges:
!    // uv is the edge from u to v
        u := uv.source
        v := uv.destination
        if u.distance + uv.weight < v.distance:
            v.distance := u.distance + uv.weight
            v.predecessor := u
3. Check for negative cycles

Djikstra pathfinding
No negative edges O(V2)

1. Assign all nodes infinity
2. Mark all nodes unvisited. Set the initial node as current. 
3. Consider all unvisited neighbors and calculate their 

tentative distances, current distance + estimate
4. After considering all neighbors, mark current node visited
5. Stop when destination is visited
6. Go to next closest neighbor, loop to step 3

Floyd-warshall find all shortest paths
Can do negative edges, no neg cycles O(V3)

shortestPath(i,j,0) = w(i,j)
shortestPath(i,j,k) = min(shortestPath(i,j,k-1), shortestPath(i,k,k-1) 
+ shortestPath(k,j,k-1) )

Johnson's find all shortest paths
O(V2logV + VE)
Can do negative edges, no neg cycles, better to spare large graphs
1. add node q to graph. connect by zero-weight edges to all nodes
2. Bellman-ford to find distance from q to every vertex shortest path
3. Reweigh edges with bellman-ford results- an edge from u to v, 

having length w(u,v), is given the new length w(u,v) + h(u) − h(v)
4. Remove q, use Dijkstra to find paths from all nodes to each other
MST grow Kruskall
O(E log E), greedy algorithm
1. create a forest F (a set of trees), where each vertex in the graph 

is a separate tree
2. create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning

a. remove an edge with minimum weight from S
b. if that edge connects two different trees, then add it to the 

forest, combining two trees into a single tree otherwise 
discard that edge.

4. At the termination of the algorithm, the forest has only one 
component and forms a minimum spanning tree of the graph.

MST grow Prim
O(V2), but O(E+VlogV) with Fibonacci heap, greedy, undirected
1. create a tree containing one vertex chosen randomly from graph
2. create a set containing all the edges in the graph
3. loop until every edge in the set connects two vertices in the tree

a. remove from the set an edge with minimum weight that 
connects a vertex in the tree with a vertex not in the tree

b. add that edge to the tree


