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NP Shit
Decision problems - Does an object of  a certain quality exist?
Search problems - Find an object of  a certain quality.
Optimization problems - Find an object of  the best quality.
Not necessarily Decision < Search < Optimization- if  decision is 
hard, search and optimization are too.
P - set of  all problems solvable in polynomial time
NP - Verifiable, but not solvable in polynomial time
NP-Hard - Can be used to solve any problem in NP (all NP 
problems are reducible to NP-Hard problems)
NP-Complete - in NP and NP-Hard
Cook Reductions:
Useful when we have algorithm A in P and we want to show B in P
Karp Reductions:
Useful when A is NP-Complete and want to show B is NP-Complete
A is Karp-reducible to B if  there exists a polytime algo such that

1) input x for problem A and R(x) is input for problem B
2) x is yes-input for A and R(x) is yes input for B

Uses:  1) If  there is an algo that solves B, there is for A as well
 2) If  A is hard, then B is also hard

RAD is Karp-reduction that transforms A inputs to D inputs in Ptime
To Show D is NP-complete:

1) Show D is in NP (prove there exists a polynomial time 
verifier for the problem)

2) Reduce some NP-complete problem to D
1) Give polynomial time algorithm R such that if  

input x is an input for problem A, then R(x) is 
an input for problem D

2) Show that if  x ϵ A then R(x) ϵ B
3) Show that if  R(x) ϵ B then x ϵ A

3) The reduction must be polytime and map “yes” instances 
to “yes” instances and “no” instances to “no” instances

Good NP problems to know
3-SAT, or Boolean Satisfiability-
Problem of  determining if  variables of  a given Boolean formula can 
be assigned in such a way as to make the formula evaluate to TRUE.
Conjunctive Normal Form: ORs ANDed. 3CNF = groups of  3.
Red-Blue Subsets
If  you have a set of  n elements, and a set of  arbitrary subsets, can 
you color the set of  elements such that every subset has at least one 
red and blue element?
Proof  that Red-Blue Subsets is NP-complete
Use a reduction from 3-SAT. First, prove that RBS is in NP by giving 
polynomial time Verifier V(x, y). Need to check constraints: 1) R and 
B cover S 2) R and B are disjoint 3) Each subset has 1 red and 1 blue
Then, build 3-SAT set that is similar to the RBS situation, in which 
there are CNF statements that correspond to subsets.
Then, prove “there is a solution to the 3-SAT problem if  and only if  
there is a solution to the RBS problem, by going from both sides; 
solution to 3-SAT if  RBS, and solution to RBS if  3-SAT.
Therefore, Red-Blue Subsets is in NP-Hard, because it is at least as 
difficult as 3-SAT. Since it is NP and NP-Hard, it is NP-Complete.

Linear Programming

How to take the Dual
1) Rewrite the objective as minimization (maximize the negative)
2) Rewrite each inequality constraint as a less than or equal and 

rearrange each constraint so that the right hand side is 0
3) Define a non-negative dual variable for each inequality constraint, 

and an unrestricted dual variable for each equality constraint.
 λ1 ≥ 0 for inequality, λ2 for equality
4) For each constraint, eliminate the constraint and add the term 

(dual variable)*(left hand side of  constraint) to the objective. 
Maximize the result over the dual variables.

5) Rewrite the objective so that it consists of  several terms of  the 
form (primal variable)*(expression with dual variables), plus 
remaining terms involving only dual variables

6) Remove each term of  the form (primal variable)*(expression with 
dual variables) and replace with a constraint of  the form:

1) Expression ≥ 0 if  the primal is non-negative
2) Expression ≤ 0 if  the primal is negative
3) Expression = 0 if  the primal is unrestricted

7) If  the linear program in step 1 was rewritten as minimization, 
rewrite as minimization.

Hashing
Universal Hashing- a single hash function can get fucked if  
someone purposely chooses all keys that hash to the same slot. 
Solution- have a family of  hash functions and randomly choose one 
of  them to hash any given key. That way you or the attack have no 
idea what will hash to what, but since it’s perfectly random you can 
guarantee that most slots will be hit evenly. It’s called universal if  for 
each pair of  distinct keys k, l in U, the number of  hash functions h in 
H for which h(k) = h(l) is at most |H|/m. m = number of  slots.
Perfect Hashing- Hashing is perfect if  O(1) memory accesses are 
required to perform a search in the worst case. We use two levels of  
hashing, with universal hashing at each level.

Approximation Algorithms
A lot of  problems are NP-complete but we can approximate some 
shit and still get reasonable answers in reasonable amounts of  time.
We say that an algorithm for a problem has an approximation ratio 
of  p(n) if  for any input size n, the cost C of  the solution produced 
by the algorithm is within a factor of  p(n) of  the cost C* of  an 

optimal solution: 

35 Approximation Algorithms

Many problems of practical significance are NP-complete, yet they are too impor-
tant to abandon merely because we don’t know how to find an optimal solution in
polynomial time. Even if a problem is NP-complete, there may be hope. We have at
least three ways to get around NP-completeness. First, if the actual inputs are small,
an algorithm with exponential running time may be perfectly satisfactory. Second,
we may be able to isolate important special cases that we can solve in polynomial
time. Third, we might come up with approaches to find near-optimal solutions in
polynomial time (either in the worst case or the expected case). In practice, near-
optimality is often good enough. We call an algorithm that returns near-optimal
solutions an approximation algorithm. This chapter presents polynomial-time ap-
proximation algorithms for several NP-complete problems.

Performance ratios for approximation algorithms
Suppose that we are working on an optimization problem in which each potential
solution has a positive cost, and we wish to find a near-optimal solution. Depending
on the problem, we may define an optimal solution as one with maximum possi-
ble cost or one with minimum possible cost; that is, the problem may be either a
maximization or a minimization problem.

We say that an algorithm for a problem has an approximation ratio of !.n/ if,
for any input of size n, the cost C of the solution produced by the algorithm is
within a factor of !.n/ of the cost C ! of an optimal solution:

max
!

C

C ! ;
C !

C

"
! !.n/ : (35.1)

If an algorithm achieves an approximation ratio of !.n/, we call it a !.n/-approx-
imation algorithm. The definitions of the approximation ratio and of a !.n/-
approximation algorithm apply to both minimization and maximization problems.
For a maximization problem, 0 < C ! C !, and the ratio C !=C gives the factor
by which the cost of an optimal solution is larger than the cost of the approximate



General question for appx algorithms will be: prove X algorithm is a 
Y-approximation. For example, APPROX-VERTEX-COVER:

35.1 The vertex-cover problem 1109
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Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [ fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

Is a 2-approximation of  VERTEX-COVER (NP-Complete) and 
runs in polynomial time. Whenever you figure out a Y-approximation 
algorithm, the proof  is generally pretty non-intuitive.

Uncertainty
Amortized Analysis
1) Aggregate Analysis
Fucking count everything. Add up everything and divide by the 
number of  shits you counted. All operations have same “cost”.
2) Accounting method
This is where we “pay it forward” with certain operations to “cash 
them in” later for different operations. Logically leads to.......
3) Potential method
This is where the Φ shit comes in.
Competitive Analysis
The idea is that for an online algorithm, you don’t know what data 
you’re working with. So it is possible that the person sending data 
can sabotage your algorithm by sending the worst possible inputs. So, 
given some arbitrarily bad input giver, how does your algorithm 
perform? So you end up with a ratio of  online to offline. For the ski-
rental example, we make an algorithm that chooses optimally until T 
days, then pays 2T, making it 2-competitive (worst case 2x cost).

Distributed Algorithms
General idea is that there are nodes that can know their neighbors 
and can communicate with their neighbors by sending messages. 
Using this fact, the nodes have to come to some decision or make 
some computation. Examples:
Leader election- send your Unique ID to your neighbors and when 
you receive one, compare it to yours and send out the bigger one. 
Eventually, only one will remain - O(n). Advanced: Start with local 
leaders and round robin eliminate. O(log n).
Max independent set- Independent set I is maximal if  no strict 
superset of  I is independent.

Simplified Luby’s Algorithm
Initialize: All processes added to “LIVE” set. MIS = ∅
1) Each live node/process “marks” itself  with probability 1/2d
2) Each marked node v checks neighbors. If  any marked, v unmarks 

itself. NOTE: Two adjacent marked nodes can unmark each other
3) Each remaining marked node adds itself  to MIS (win!) and 

removes itself  and all neighbors from LIVE set.
4) Terminate when LIVE = ∅.
P(# of  rounds > 8d*ln n ) = at most 1/n

Expected # of  rounds O(d * ln n)

Cryptography (yeah!)
Diffie-Hellman Key Exchange
Publics are g and p where g is 2<=g<=p-2
Alice selects a, computes ga and sends to Bob, who selects b (1<= a, 
b <= p-2) computes gb and sends gb to Alice.
Alice can compute (gb)a mod p = K
Bob can compute (ga)b mod p = K
Can be thwarted by man-in-the-middle attack
RSA (uses hard prime factorability)
Alice picks two large secret primes p and q, computes N = p*q
Chooses encryption exponent e which satisfies gcd(e, (p-1)(q-1))=1
Alice’s public key is then (N, e)
and the decryption exponent is obtained using Extended Euclidean:
e*d ≡ 1 mod (p-1)(q-1)
Alice’s private key is then (d, p, q)
Encryption: c = me mod N
Decryption: m = cd mod N
Extended-Euclid(a, b)
1 if b == 0
2 return (a, 1, 0)
3 else (d’, x’, y’) = Extended-Euclid(b,a mod b)
4 (d, x, y) = ( d’, y’, x’- FLOOR(a/b)*y’ )
5 return (d, x, y)
Then take the result x, plug in to a(x+b)+b(y-a)=1, where x+b = d.

Sub-linear Algorithms
The general idea is to make a nearly accurate approximation for what 
you’re trying to find: sortedness of  list/connectedness of  graph.
First you need to define “close” to sorted or connected, which 
involves defining some variable ϵ which is the acceptable error rate 
(1/10, maybe). For graphs, ϵ-close to connected if  can add ϵdn and 
transform to connected. For lists, ϵ-close to sorted if  can remove ϵn 
items to have a sorted list.
The general solution algorithm is a combination of:
1) Do it 1/ϵ, 1/ϵd, 1/ϵsomething times
2) Each step pick random element, do a search for or from that 

element (Binary Search for arrays, BFS for graphs)

Compression (yeah!)
Nothing special here, standard 6.02. You can’t really remove bits; all 
you can do is represent them. Three types of  compression mentioned: 
Lossless: Run-length encoding, huffman-coding, lempel-ziv
Lossy: .jpg/.mpg/.mp3, wavelets, bloom filters
Run-length- based on how many in a row there are
Huffman- purely based on frequency of  occurrence (build tree)
Lempel-ziv- use pointers to previous places where saw the substring
.jpg/.mpg...- store with fourier representation, and cut undetectable
Bloom filter- data struct for answering membership queries (+ save 
lots of  space, - false positive)

Key Algorithms
van Emde Boas (vEB) - faster than quicksort- O(n lg lg n) running 
time. You can only run it if  the input is wihtin a universe of  integers 
size 1 through n.

In general, if  you have an adversary choosing difficult inputs to an 
algorithm, introduce randomness. This will guarantee limited worst 
case behavior.


